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Abstract: Due to the limitations of satellite antenna technology, current operational microwave soil
moisture (SM) data products are typically at tens of kilometers spatial resolutions. Many approaches
have thus been proposed to generate finer resolution SM data using ancillary information, but it
is still unknown if assimilation of the finer spatial resolution SM data has beneficial impacts on
model skills. In this paper, a synthetic experiment is thus conducted to identify the benefits of
SM observations at a finer spatial resolution on the Noah-MP land surface model. Results of this
study show that the performance of the Noah-MP model is significantly improved with the benefits
of assimilating 1 km SM observations in comparison with the assimilation of SM data at coarser
resolutions. Downscaling satellite microwave SM observations from coarse spatial resolution to 1 km
resolution is recommended, and the assimilation of 1 km remotely sensed SM retrievals is suggested
for NOAA National Weather Service and National Water Center.
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1. Introduction

Soil moisture (SM) is an important variable in coupled climate models and numerical weather
prediction systems due to its impacts on land–atmosphere water, energy and carbon exchanges [1–3].
In situ observations reasonably track the SM status, but they are limited at local and even site scales [3].
The constraints of the traditional in situ observations can be compensated for by remote sensing
technology that has shown the unique value of providing quantitative SM estimations at larger scales.

Optical and thermal infrared satellite SM sensing started in 1970, and several approaches were
developed to exploit the relationships between surface reflectance and the SM [4–6]. However,
these empirical relationships-based SM observations are significantly impacted by the soil spectral
characteristics, and could not be obtained on cloudy days [7]. Microwave satellite technologies were
thus developed to archive accurate SM retrievals [8–10]. However, active microwave radars are typically
impacted by surface roughness and vegetation structure [11], and passive microwave-radiometers-based
SM estimations are generally at tens of kilometers resolutions due to the limitations of satellite antenna
technology [12–14].

Aiming to advance the use of microwave SM retrievals over local and regional scales, many
downscaling approaches have been proposed to produce finer resolution satellite SM data [15–19].
Particularly, observations from other satellite sensors at finer spatial resolution are used as
ancillary inputs to achieve accurate fine spatial resolution SM [20,21]. The feasibilities and notable
advantages of the developed downscaling approaches have been evaluated with in situ observations.
However, comprehensive assessments on the advantages and disadvantages of the finer resolution
SM observations are hampered by the limitations of in situ sites’ spatial distributions, and the
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uncertainties from the scale discrepancy and quality of the ancillary observations. Considering the
spatial inhomogeneity [22,23], the downscaled satellite soil moisture data may benefit from direct
inter-comparisons over the original coarse spatial resolution observations. There are also lots of open
scientific questions related to understanding the impacts of assimilating finer spatial resolution SM
observations on model performance, model requirements for finer spatial resolution SM observations
and the operational application of finer spatial resolution SM observations.

To address these questions, SM estimations at different spatial resolutions are synthetically
generated in this paper, and the impacts of assimilating finer resolution SM observations on Noah-MP
model skills are then examined. The Noah-MP [24] land surface model (LSM) is a component of the
National Water Model (NWM) that provides 1-km spatial resolution streamflow predictions over
the entire continental United States (CONUS). The goal of this study is to identify the needs of finer
spatial resolution SM data in the sequential SM data assimilation system, and in turn to investigate the
potential application of higher spatial resolution SM observations in the operational models.

2. Method

2.1. Noah-MP Land Surface Model

The Noah-MP LSM was developed to improve the Noah model that has been widely used in
operational numerical weather prediction (NWP) and climate models. The Noah-MP model uses
a separate vegetation canopy and multiple options for land–atmosphere interaction processes to
accommodate numerous combinations of parameterization schemes for an ensemble representation of
processes in nature [24]. It has been used in the WRF-Hydro model that is the core of the National
Water Model (NWM) system. Similar to the Noah model, the Noah-MP also has four soil layers with
thicknesses of 10, 30, 60, and 100 cm.

The Land Information System (LIS) is a software framework developed by the National Aeronautics
and Space Administration (NASA). The LIS integrates the use of ground and satellite observations,
along with the advanced LSMs and computing tools, to accurately characterize land surface states
and fluxes [25]. LIS version 7.2 integrates the Noah-MP version 3.6 that has the same dynamic core
with the Noah-MP model used in the operational WRF-Hydro model. Based on the LIS platform, the
Noah-MP version 3.6 was employed to conduct the synthetic experiment in this paper.

2.2. Synthetic Experiment

A synthetic experiment is designed to evaluate the impacts of assimilating different spatial
resolution SM data. Based on the Noah-MP model, the basic structure is [26]: (1) a control run (CTR)
is conducted as a single realization to represent the “true” state of the Noah-MP model, using the
optimal meteorological forcing data. (2) According to Table 1, the Noah-MP is driven by the perturbed
meteorological forcing data and state variables, referred as open loop run (OLP). This indicates
that the Noah-MP model runs without the benefits of data assimilation under suboptimal forcing
and initialization conditions, with the assumption that a systematic error in model output between
perturbed and unperturbed forcing and state conditions should not be caused by adding unbiased
uncertainties in the ensemble Kalman Filter (EnKF) data assimilation system [27]. (3). In the data
assimilation (DA) cases, synthetic observations at 1, 5, 12.5, 25 and 100 km spatial resolutions are
assimilated into the OLP run using the EnKF. To inter-compare the Noah-MP model skills with the
benefits of assimilating different resolution synthetic observations, the DA01km, DA05km, DA12km,
DA25km and DA100km assimilate 1, 5, 12.5, 25 and 100 km synthetic observations, respectively. As the
DA cases were also forced by the same sub-optimal forcing inputs and state variables as those used in
the OLP run, the differences between the DA cases and the OLP run are good metrics to evaluate the
impacts of data assimilation with. Given the same assimilation strategy and the same forcing data and
state variables, the differences among the five DA cases should only come from assimilating different
spatial resolution synthetic observations.
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Before data assimilation, 1, 5, 12.5 and 100 km synthetic observations were all reprocessed as 25 km
spatial resolution. Particularly, synthetic observations from 625 pixels at 1 km resolution, 25 pixels at
5 km resolution and four pixels at 12.5 km resolution were simply averaged into one 25 km resolution
pixel. However, the synthetic observations of one pixel at 100 km resolution were used to fill the
corresponding four pixels at 25 km resolution. These reprocessed 25 km synthetic observations were
then bias-corrected to the CTR run-based 0–10 cm SM climatology using the CDF-matching method
with CDFs built for each land grid over the study domain during the study period [28,29].

In this paper, the ensemble size for both of the OLP run and each of the five DA cases was set as
12, as that is the optimal ensemble size for a sequential SM data assimilation system [30]. The CTR
run and the Noah-MP model under the ensemble condition were all spun up by cycling five times
through the period from January 1st, 2015 to December 31st, 2018. All of them were then conducted
over the same period with one hour time step inputs and daily outputs. The daily bias-corrected
synthetic observations were assimilated into the Noah-MP model at 00:00Z with updating 0-10 cm SM
initialization. All simulations in this paper were forced by precipitation, near-surface air temperature,
near-surface wind, downward shortwave/longwave radiation and surface pressure from the Global
Data Assimilation System product [31]. Both of the CTR and OLP runs were conducted at 25 km spatial
resolution, and all simulations were conducted over a study area from 25◦ N, 125◦ W to 50◦ N, 75◦ W
that was basically a gridded CONUS domain.

Table 1. Perturbations for state parameters and meteorological forcing variables [26,32].
The abbreviations SW and LW indicate short and long wave radiation. SD is standard deviation. The
SM1, SM2, SM3, SM4 are 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm soil moisture.

Perturbation Type SD
Cross Correlation for Forcing Variable Perturbations

Precipitation SW LW

Precipitation 0.5 (mm) 1.0 −0.8 0.5
SW 0.3 (Wm−2) −0.8 1.0 −0.5
LW 50 (Wm−2) 0.5 −0.5 1.0

Cross Correlation for State Variable Perturbations

Perturbation type SD SM1 SM2 SM3 SM4
SM1 (0–10 cm) 6.00 × 10−3 m3m−3 1.0 0.6 0.4 0.2

SM2 (10–40 cm) 1.10 × 10−4 m3m−3 0.6 1.0 0.6 0.4
SM3 (40–100 cm) 6.00 × 10−5 m3m−3 0.4 0.6 1.0 0.6

SM4 (100–200 cm) 4.00 × 10−5 m3m−3 0.2 0.4 0.6 1.0

2.3. Ensemble Kalman Filter

The EnKF has been widely applied in sequential SM data assimilation [30,33]. Given an ensemble
of model variable state vectors, the EnKF updates an ensemble forecast step using a Monte Carlo
approximation [33]. Based on the perturbed forcing data, state variables and model parameters,
the model states (Y) for each ensemble member propagated forward in the forecast step as

Yt+ = Yt− + K
(
Mt
−HYt−

)
(1)

where the Kalman gain matrix K is given by

K =
µt

YHtT

Htµt
YHtT + µt

M

(2)

The matrix M is the observation vector, and the matrix H replies on the observations. The error
variance µt

Y was set as a constant value 3% as LIS examples [26].
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3. Results

Assuming the CTR run represents the “true” state of the Noah-MP land surface model, Figure 1
documents differences in root mean square differences (RMSDs) for SM simulations in 0-10 cm soil layer
during the 2015 to 2018 period. The red color shading indicates that the DA01km performs better than
each of the four coarser resolution DA cases, including DA05km, DA12km, DA25km and DA100km,
yet the blue color shading means that DA01km shows modest performance. The inter-comparison
results present similar patterns with DA01km case, showing significant improvements in 0-10cm SM
estimations in the CONUS mid-west areas. Specifically, relative to the DA100km case, the DA01km
case exhibits the great improvements as larger than 0.02 m3/m3 in the west CONUS in Figure 1d;
whereas the insignificant differences in grey color cover the rest study areas.
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Figure 1. Differences in control run (CTR) run-based root mean square differences (RMSDs) for 0–10 cm
soil moisture (SM) simulations during 2015 to 2018 period: (a) DA01km Minus DA05km, (b) DA01km
Minus DA12km, (c) DA01km Minus DA25km, and (d) DA01km Minus DA100km. The red (blue) color
indicates DA01km case performs better (worse), while grey color means insignificant.

Propagating surface information to a deeper soil layer primarily relies on the inherent
surface-deeper connection of the LSM. The behaviors of SM simulations for surface soil layer in
Figure 1 are well mirrored in the 40–100 cm SM simulations (Figure 2). Specifically, more remarkable
RMSD differences can be seen in Figure 2 with the assumption that the CTR run simulations are the
“true” state. With regards to mid-west CONUS, DA01km demonstrates a more robust agreement
with the CTR run simulations, with significantly reducing RMSD values over each of the four coarser
resolution DA cases. With the benefits of assimilating 1 km SM data, improvements on the Noah-MP
SM estimations in 40–100 cm soil layer reach to 0.05 m3/m3. However, slight degradations caused by
the DA01km case scatter in the southwest and south CONUS.
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Figure 2. Differences in CTR run-based root mean square differences (RMSDs) for 40–100 cm soil
moisture (SM) simulations during 2015 to 2018 period: (a) DA01km Minus DA05km, (b) DA01km
Minus DA12km, (c) DA01km Minus DA25km, and (d) DA01km Minus DA100km. The red (blue) color
indicates DA01km case performs better (worse), while grey color means insignificant.

With respect to the CTR run, Figure 3 exhibits the study domain-averaged probability density
function (PDF) as a function of RMSD during the 2015 to 2018 period for 0–10 cm SM, 40–100 cm SM,
0–10 cm soil temperature (ST) and 40–100 cm ST estimations. The statistical distribution function of
frequency probability shifting toward the left indicates improvement with raising the probability of
lower RMSD values, whereas curves shifting toward the right mean degradations. Relative to the OLP
run, the DA01km case shows clear improvements in SM estimations, and 40–100 cm ST simulations
with significant increase in the probability of lower RMSDs; yet degradations caused by the DA01km
case are found in Figure 3c. Compared to each of the four coarser-resolution DA cases, DA01km is
successful in enhancing Noah-MP LSM skills of estimating SM and ST for both 0–10 cm and 40–100 cm
soil layers.

Specifically, compared to the OLP run, the study domain-averaged RSMDs for SM simulations
in the surface soil layer are significantly reduced by 0.0017 m3/m3 (18.5% reduction) by the DA01km
case. Meanwhile, relative to the DA05km, DA12km, DA25km and DA100km cases, the study
domain-averaged RSMDs for 0–10 cm SM simulations are significantly reduced by 0.0028 m3/m3

(29.9% reduction), 0.0024 m3/m3 (26.2% reduction), 0.0022 m3/m3 (23.6% reduction), 0.0036 m3/m3

(38.1% reduction) by the DA01km case, respectively. The positive information in the surface soil
layer is well propagated to the deeper soil layer. With the benefits of assimilating 1 km SM synthetic
data, the study domain-averaged RSMD values for 40–100 cm SM estimations are remarkably
decreased by 0.0095 m3/m3 (113.3%), 0.0045 m3/m3 (53.6%), 0.0038 m3/m3 (44.7%), 0.0033 m3/m3

(38.7%) and 0.0056 m3/m3 (66.3%) in comparison with the OLP run, DA05km, DA12km, DA25km and
DA100km, respectively.

Compared to the OLP run, however, the study domain-averaged RSMD value for soil temperature
is increased 0.16K (12.5 % increase) by the DA01km case. The DA01km case performs modestly over
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the OLP run, but it takes the best performance in the five DA cases. Relative to the DA05km, DA12km,
DA25km and DA100km cases, the study domain-averaged RSMDs for 0-10 cm ST simulations are
significantly reduced by 0.15 K (19.1% reduction), 0.14 K (17.9% reduction), 0.10 K (12.8% reduction)
and 0.14 K (17.9% reduction), respectively. More remarkable improvements with the benefits of 1 km
SM data assimilation are found for 40-100 cm ST simulations. With respect to the CTR run, the study
domain-averaged RSMDs are dramatically decreased by 0.62K (82.7%), 0.69K (92.1%), 0.66K (88.8%),
0.47K (82.6%) and 0.61K (82.7%) in comparison with the OLP run, DA05km, DA12km, DA25km and
DA100km, respectively. The strong four-year (over 2015-2018 period) consistency of results in Figure 3
indicates that the inter-comparisons in this paper are qualitatively stable and thus likely representative
of a longer analysis period.
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4. Discussions and Summary

A synthetic experiment was conducted in this paper to investigate the potential impacts of
assimilating finer spatial resolution SM data on Noah-MP land surface model performances. The results
here demonstrate: (1) With the benefits of assimilating 1 km SM data, Noah-MP model-based SM
and ST simulations are significantly improved in comparison with the assimilation of coarser spatial
resolution SM data. (2) The LSM used in this paper is the Noah-MP3.6 model, but similar results can be
obtained in other LSMs-based SM data assimilation systems due to the foundation of the results here
serving as a general synthetic experiment. (3) LSMs are the components of most numerical weather
prediction (NWP) and climate models. Given the better performances of SM and ST simulations,
it is expected to improve NWP and climate model skills, with the benefits of assimilating 1 km SM
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observations through their positive impacts on the exchange estimations of water and energy between
land surface and atmosphere. (4) LSM outputs such as SM are also critical variables in drought
and flood monitoring. In terms of the significant improvements in LSM skills, the capabilities of
drought/flood monitoring can be ideally enhanced with the benefits of 1 km SM data assimilation.

Rather than simply asserting that assimilating finer spatial resolution SM data leads to a better
performance, it should be noted that the differences among the DA05km, DA12km, DA25km and
DA100km cases are relatively small in comparison with the dramatic improvements from the benefits of
the DA01km case. This means that downscaling SM observations from coarser spatial resolution to 5 km
may not exhibit significant improvements on LSM performance, as expected. Yet, downscaling satellite
SM retrievals from coarser spatial resolution to 1 km can ideally enhance LSM skills (Figures 1–3).

This synthetic experiment was designed based on a 25 km SM data assimilation system. The land
surface variables (for instance: land cover, surface albedo and vegetation index) used in the CTR
run, OLP run and DA25 km case were all regridded from 1 to 25 km spatial resolution to satisfy
the requirements of the data assimilation system. Although the Noah-MP3.6 model for each case is
forced by the same meteorological forcing data, the OLP run and the DA25km are benefited by the
same spatial resolution (25 km) land surface variables with the assumption of the 25 km CTR run
representing the “truth”, which may result in the performances of the OLP run and DA25km being
overestimated in this paper.

In summary, the assimilation of 1 km spatial resolution SM data has a better capacity to improve
Noah-MP model performance than the assimilation of any other spatial resolution SM data tested.
With respect to the CTR run simulations, the Noah-MP model with the benefits of assimilating 1 km
SM data sets is more successful in estimating SM and soil temperature (ST) for both 0–10 cm and
40–100 cm soil layers, reducing the probability of greater RMSD values in comparison with the coarse
SM DA cases. Based on this result, downscaling microwave satellite SM observations from coarser
spatial resolution to 1 km resolution is recommended, and the assimilation of 1 km remotely sensed
SM retrievals is suggested for NOAA National Weather Service and National Water Center.
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